Microbranching in mode-I fracture in a randomly perturbed lattice.

نویسندگان

  • Shay I Heizler
  • David A Kessler
  • Yonatan S Elbaz
چکیده

We study mode-I fracture in lattices using atomistic simulations with randomly distributed bond lengths. By using a small parameter that measures the variation of the bond length between the atoms in perfect lattices and using a three-body force law, simulations reproduce the qualitative behavior of the beyond-steady-state cracks in the high-velocity regime, including reasonable microbranching. In particular, the effect of the lattice structure on the crack appears minimal, even though in terms of the physical properties such as the structure factor g(r) and the radial or angular distributions, these lattices share the physical properties of perfect lattices rather than those of an amorphous material (e.g., the continuous random network model). A clear transition can be seen between steady-state cracks, where a single crack propagates in the midline of the sample, and the regime of unstable cracks, where microbranches start to appear near the main crack, in line with previous experimental results. This is seen in both a honeycomb lattice and a fully hexagonal lattice. This model reproduces the main physical features of propagating cracks in brittle materials, including the total length of microbranches as a function of driving displacement and the increasing amplitude of oscillations of the electrical resistance. In addition, preliminary indications of power-law behavior of the microbranch shapes can be seen, potentially reproducing one of the most intriguing experimental results of brittle fracture. There was found to exist a critical degree of disorder, i.e., a sharp threshold between the cleaving behavior characterizing perfect lattices and the microbranching behavior that characterizes amorphous materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Cohesive Investigation on Branching for Brittle Materials

The experiments on dynamic crack propagation in PMMA (polymethyl methacrylate) and in soda lime glass conducted by Fineberg and Sharon (see [1-2] and quoted references) during the last decade pointed out some characteristic features of the microbranching instability in brittle materials. They observed the existence of a critical velocity for the onset of the microbranching; described the relati...

متن کامل

Effects of number of freeze-thaw cycles and freezing temperature on mode I and mode II fracture toughness of cement mortar

Natural and artificial materials including rocks and cement-based materials such as concrete and cement mortar are affected both physically and chemically by various natural factors known as weathering factors. The freeze-thaw process, as a weathering factor, considerably affects the properties of rocks and concrete. Therefore, the effect of the freeze-thaw process on the physical and mechanica...

متن کامل

Study of Variation of the J-integral and the Fracture Toughness in Blunt V-notches under Mode I Loading

Fracture assessment of U- and V-notches is important in mechanical engineering. One can use the J-integral as fracture parameter in order to predict the critical fracture load in notches. The critical value of the J-integral in cracks is a function of the material properties. In notches, however, the material properties as well as the notch dimensions affect this critical value (named fracture ...

متن کامل

Mixed-mode I/II Interlaminar Fracture of CF/PEI Composite Material

Failures in composite materials occur mainly due to interlaminar fracture, also called delamination, between laminates. This indicates that characterizing interlaminar fracture toughness is the most effective factor in the fracture of composite materials. This study reports investigation on mixed-mode interlaminar fracture behaviour in woven carbon fibre/polyetherimide (CF/PEI) thermoplastic co...

متن کامل

Effect of Rock Fracture Filling on Mode I and II Fracture Toughness

This paper focuses on some fracture toughness tests performed on the pre-cracked Brazilian specimens of rock-like materials. Also the effect of rock fracture filling on the fracture toughness was considered experimentally.  Fracture toughness is a key parameter for studying the crack propagation and fragmentation processes in rock structures. Fracture mechanics is an applicable tool to improve ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 88 2  شماره 

صفحات  -

تاریخ انتشار 2013